Wolfram Answer Engine - Skynet (or Multivac) for real?

SF: discuss futuristic sci-fi series, ideas, and crossovers.

Moderator: NecronLord

Post Reply
kinnison
Padawan Learner
Posts: 298
Joined: 2006-12-04 05:38am

Wolfram Answer Engine - Skynet (or Multivac) for real?

Post by kinnison »

I think I've got the name of this project right. It appears to be, from the limited info available, a new type of online resource; one that will actually calculate or deduce the answers rather than just search for them. One can reasonably assume that it will store the answers to commonly-asked questions, and also be programmed to learn in a fashion similar to a neural net in order to improve the answers given.

Presumably, also, it's going to have a lot of resources available at the start, and increasingly so if its popularity takes off. The question is: Is there, or is there going to be, enough complexity there to allow it to become an emergent AI? Others have noted on another thread that there is already enough computing capacity, in total, in a high-end laptop to rival human brain power - what is lacking is the software.

This sort of semi-accidental creation of true (sapient) AI is one of the themes of several of Heinlein's books - notably "The Moon is a Harsh Mistress". He was so right in many matters, way ahead of time - is this another one? I think it might be.
User avatar
General Zod
Never Shuts Up
Posts: 29211
Joined: 2003-11-18 03:08pm
Location: The Clearance Rack
Contact:

Re: Wolfram Answer Engine - Skynet (or Multivac) for real?

Post by General Zod »

"It's you Americans. There's something about nipples you hate. If this were Germany, we'd be romping around naked on the stage here."
Modax
Padawan Learner
Posts: 278
Joined: 2008-10-30 11:53pm

Re: Wolfram Answer Engine - Skynet (or Multivac) for real?

Post by Modax »

That SLAM thread isn't referring to the same story at all. There are lots of articles on the web about this 'answers engine' but I'm not qualified to say whether its all hype and bullshit or not.

link
Tech Crunch wrote:Stephen Wolfram is building something new — and it is really impressive and significant. In fact it may be as important for the Web (and the world) as Google, but for a different purpose.

Stephen was kind enough to spend two hours with me last week to demo his new online service — Wolfram Alpha (scheduled to open in May). In the course of our conversation we took a close look at Wolfram Alpha’s capabilities, discussed where it might go, and what it means for the Web, and even the Semantic Web.

Stephen has not released many details of his project publicly yet, so I will respect that and not give a visual description of exactly what I saw. However, he has revealed it a bit in a recent article, and so below I will give my reactions to what I saw and what I think it means. And from that you should be able to get at least some idea of the power of this new system.

A Computational Knowledge Engine for the Web

In a nutshell, Wolfram and his team have built what he calls a “computational knowledge engine” for the Web. OK, so what does that really mean? Basically it means that you can ask it factual questions and it computes answers for you.

It doesn’t simply return documents that (might) contain the answers, like Google does, and it isn’t just a giant database of knowledge, like the Wikipedia. It doesn’t simply parse natural language and then use that to retrieve documents, like Powerset, for example. Instead, Wolfram Alpha actually computes the answers to a wide range of questions — like questions that have factual answers such as “What country is Timbuktu in?” or “How many protons are in a hydrogen atom?” or “What is the average rainfall in Seattle?”

Think about that for a minute. It computes the answers. Wolfram Alpha doesn’t simply contain huge amounts of manually entered pairs of questions and answers, nor does it search for answers in a database of facts. Instead, it understands and then computes answers to certain kinds of questions.

How Does it Work?

Wolfram Alpha is a system for computing the answers to questions. To accomplish this it uses built-in models of fields of knowledge, complete with data and algorithms, that represent real-world knowledge.

For example, it contains formal models of much of what we know about science — massive amounts of data about various physical laws and properties, as well as data about the physical world.

Based on this you can ask it scientific questions and it can compute the answers for you. Even if it has not been programmed explicity to answer each question you might ask it.

But science is just one of the domains it knows about — it also knows about technology, geography, weather, cooking, business, travel, people, music, and more.

It also has a natural language interface for asking it questions. This interface allows you to ask questions in plain language, or even in various forms of abbreviated notation, and then provides detailed answers.

The vision seems to be to create a system wich can do for formal knowledge (all the formally definable systems, heuristics, algorithms, rules, methods, theorems, and facts in the world) what search engines have done for informal knowledge (all the text and documents in various forms of media).

Building Blocks for Knowledge Computing

Wolfram Alpha is almost more of an engineering accomplishment than a scientific one — Wolfram has broken down the set of factual questions we might ask, and the computational models and data necessary for answering them, into basic building blocks — a kind of basic language for knowledge computing if you will. Then, with these building blocks in hand his system is able to compute with them — to break down questions into the basic building blocks and computations necessary to answer them, and then to actually build up computations and compute the answers on the fly.

Wolfram’s team manually entered, and in some cases automatically pulled in, masses of raw factual data about various fields of knowledge, plus models and algorithms for doing computations with the data. By building all of this in a modular fashion on top of the Mathematica engine, they have built a system that is able to actually do computations over vast data sets representing real-world knowledge. More importantly, it enables anyone to easily construct their own computations — simply by asking questions.

The scientific and philosophical underpinnings of Wolfram Alpha are similar to those of the cellular automata systems he describes in his book, “A New Kind of Science” (NKS). Just as with cellular automata (such as the famous “Game of Life” algorithm that many have seen on screensavers), a set of simple rules and data can be used to generate surprisingly diverse, even lifelike patterns. One of the observations of NKS is that incredibly rich, even unpredictable patterns, can be generated from tiny sets of simple rules and data, when they are applied to their own output over and over again.

In fact, cellular automata, by using just a few simple repetitive rules, can compute anything any computer or computer program can compute, in theory at least. But actually using such systems to build real computers or useful programs (such as Web browsers) has never been practical because they are so low-level it would not be efficient (it would be like trying to build a giant computer, starting from the atomic level).

The simplicity and elegance of cellular automata proves that anything that may be computed — and potentially anything that may exist in nature — can be generated from very simple building blocks and rules that interact locally with one another. There is no top-down control, there is no overarching model. Instead, from a bunch of low-level parts that interact only with other nearby parts, complex global behaviors emerge that, for example, can simulate physical systems such as fluid flow, optics, population dynamics in nature, voting behaviors, and perhaps even the very nature of space-time. This is the main point of the NKS book in fact, and Wolfram draws numerous examples from nature and cellular automata to make his case.

But with all its focus on recombining simple bits of information and simple rules, cellular automata is not a reductionist approach to science — in fact, it is much more focused on synthesizing complex emergent behaviors from simple elements than in reducing complexity back to simple units. The highly synthetic philosophy behind NKS is the paradigm shift at the basis of Wolfram Alpha’s approach too. It is a system that is very much “bottom-up” in orientation.

Wolfram has created a set of building blocks for working with formal knowledge to generate useful computations, and in turn, by putting these computations together you can answer even more sophisticated questions and so on. It’s a system for synthesizing sophisticated computations from simple computations. Of course anyone who understands computer programming will recognize this as the very essence of good software design. But the key is that instead of forcing users to write programs to do this in Mathematica, Wolfram Alpha enables them to simply ask questions in natural language questions and then automatically assembles the programs to compute the answers they need.

This is not to say that Wolfram Alpha IS a cellular automata itself — but rather that it is similarly based on fundamental rules and data that are recombined to form highly sophisticated structures. The knowledge and intelligence it contains are extremely modularized and can be used to synthesize answers to factual questions nobody has asked yet. The questions are broken down to their basic parts and then simple reasoning takes places, and answers are computed on the vast knowledge base in the system. It appears the system can make inferences and do some basic reasoning across what it knows — it is not purely reductionist in that respect; it is generative, it can synthesize new knowledge, if asked to.

Wolfram Alpha perhaps represents what may be a new approach to creating an “intelligent machine” that does away with much of the manual labor of explicitly building top-down expert systems about fields of knowledge (the traditional AI approach, such as that taken by the Cyc project), while simultaneously avoiding the complexities of trying to do anything reasonable with the messy distributed knowledge on the Web (the open-standards Semantic Web approach). It’s simpler than top down AI and easier than the original vision of Semantic Web.

Generally if someone had proposed doing this to me, I would have said it was not practical. But Wolfram seems to have figured out a way to do it. The proof is that he’s done it. It works. I’ve seen it myself.
Post Reply